Skip to content

四火的唠叨

一个纯正程序员的啰嗦

Menu
  • 所有文章
  • About Me
  • 关于四火
  • 旅行映像
  • 独立游戏
  • 资源链接
Menu

谈谈分布式锁

Posted on 09/18/202409/19/2024 by 四火

不要使用分布式锁

就像 Martin Fowler 说的那样,“分布式调用的第一原则就是不要分布式”,谈分布式锁也要先说,不要使用分布式锁。原因很简单,分布式系统是软件系统中复杂的一种形式,而分布式锁是分布式系统中复杂的一种形式,没有必要的复杂性就不要引入。

有的逻辑是没有副作用的(纯函数代码),那就可以无锁执行;有的数据经过合理的 sharding 之后,可以使用单线程(单节点)执行,那就单线程执行。

比如一种常见的模式就是使用 queue(比如 Kafka),任务全部放到队列中,然后根据 sharding 的逻辑,不同的 consumer 来处理不同的任务,互相之间不会干扰冲突。

还有一个例子是 Kotlin Coroutine,通过指定一个单线程的 dispatcher,也可以保证它执行的操作之间互相不会有多线程的冲突问题。

有了这样的原则以后,再来谈谈几种分布式锁。

数据库锁

分布式系统中,我觉得我们最常见的锁就是使用一个中心数据库来做的。

一种是悲观锁,就是 “select xxx … for update” 这样的,相应的数据行会被锁上,直到 commit/rollback 操作发生。如果被别人锁了,当前线程没得到锁的话就会等着。

还有一种是乐观锁,就是使用版本号,“update … where … version=A” 这样的。如果 update 成功,表示获取锁成功,并且操作也成功;否则就是 update 失败,需要重新获取状态再来操作一遍。

大多数情况下,后者要更高效一些,因为阻塞的时间通常更短,不过在锁竞争比较激烈的情况下,反而效率会反过来。另外一个,悲观锁代码写起来会容易一些,因为 select 语句执行和 commit/rollback 是两步操作,因此二者之间可以放置任意逻辑;而乐观锁则是需要把数据的写操作和 version 的比较放在一条语句里面。

这两种都很常见,基本上我接触过的一半以上的项目都用过两者。这个数据库不一定非得是关系数据库,但是强一致性必须是保证的。

S3

使用 S3 来创建文件,让创建成功的节点得到锁,文件里面也可以放自定义的内容。我们去年的项目用到这个机制。这种方式是建立在 S3 2020 年 12 月 1 日,上线的 strong consistency 的 feature。

大致上,有这样两种思路:

  1. 使用 S3 versioning,就是说,在 versioning 打开的情况下,文件的写入不会有 “覆盖” 的情况发生,所有内容都会保留。在创建文件的时候,response 种会有一个 x-amz-version-id header。节点写入文件后,再 list 一下所有的 version,默认这些 version 会根据创建的时间顺序递减排列,后创建的在前,因此比较其中最早的那个 version 和自己创建文件后得到的 version,如果两者相等,说明自己得到了锁。
  2. 使用 S3 Object Lock,这个可以控制让第一次写成功,后面的操作全部失败,所以第一次写入成功的节点得到锁。

使用这种方式,对于那些本来就需要使用 S3 文件系统来共享任意信息的情况很方便,但是需要自己处理超时的问题,还有 retention 策略(该不该/什么时候删掉文件)。

Redlock

Redlock 就是 Redis 的锁机制。Martin Kleppmann(就是那个写《Design Data-Intensive Applications》的作者)几年前写过一篇文章,来吐槽 Redlock 在几种情况下是有问题的:

  1. Clock jump:Redlock 依赖于物理时钟,而物理时钟有可能会跳(jump),并且这种状况是无法预测的。Clock jump 就是说,始终会不断进行同步,而同步回来的时间,是有可能不等于当前时间的,那么系统就会设置当前时间到这个新同步回来的时间。在这种情况下,依赖于物理时间的锁逻辑(比如超时的判断等等)就是不正确的。
  2. Process pause:得到锁的节点,它的运行是有可能被阻塞的。比如 GC,下面这个图说的就是这个情况——client 1 一开始得到锁了,执行过程中有一个超长时间的 pause,这个 pause 导致锁超时并被强制释放,client 2 就得到锁了,之后 client 1 GC 结束,缓过来后恢复执行,它却并没有意识到,它的锁已经被剥夺了,于是 client 1 和 client 2 都得到了锁,对于数据的修改就会发生冲突。
  3. Network delay:其实原理和上面差不多,网络延迟+锁超时被强制剥夺和重分配的逻辑,在特定情况下就是不正确的。

问题可以理解,可是仔细想想这个问题的本质是什么?它的本质其实就是消息延迟+重排序的问题,或者更本质地说,就是分布式系统不同节点保持 consistency 的问题,因为 lock service 和 client 就是不同的节点,lock service 认为之前的锁过期了,并重分配锁给了 client 2,并且 client 2 也是这样认为的,可是 client 1 却不是,它在 GC 之后认为它还持有者锁呢。

如果我们把数据的写操作和锁管理的操作彻底分开,这个问题就很难解决,因为两个节点不可能 “一直” 在通信,在不通信的时间段内,就可能会发生这种理解不一致的情况。但是如果我们把写操作和锁管理以某种方式联系上,那么这个问题还是可以被解决的。简单说,就是物理时钟不可靠,逻辑时钟可以解决这个问题。

之后 Martin Kleppmann 提出了解决方案,他的解决方案也就是按照这个思路进行的。他的方法很简单,就是在获取锁的时候,得到一个永远递增的 token(可以被称作 “fencing token”),在执行写操作的时候,必须带上这个 token。如果 storage 看到了比当前 token 更小的 token,那么那个写操作就要被丢弃掉。

Chubby

Chubby 是 Google 的分布式锁系统,论文在这里可以找到,还有这个胶片,对于进一步理解论文很有帮助。从时间上看,它是比较早的。

Chubby 被设计成用于粗粒度的(coarse-grained)锁需求,而非细粒度(fine-grained,比如几秒钟以内的)的锁需求。对于这样一个系统,文中开始就提到 consistency 和 availablity 重要性要大过 performance,后面再次提到首要目标包括 reliability,能够应对较多数量的 clients,和易于理解的语义,而吞吐量和存储容量被列在了第二位。

Chubby 暴露一个文件系统接口,每一个文件或者文件夹都可以视作一个读写锁,文件系统和 Unix 的设计思路一致,包括命名、权限等等的设计都是基于它。这是一个很有意思的设计。

对于一致性的达成,它使用 Paxos,客户端寻找 master 和写数据都使用 quorum 的机制,保证写的时候大部分节点成功,而读的时候则是至少成功读取大部分节点(R+W>N,这个思路最早我记得是 Dynamo 的论文里面有写);如果 lock 有了变化,它还提供有通知机制,因为 poll 的成本太高。

内部实现上面,每一个 Chubby 的 cell 都是由作为 replica 的 5 个服务节点组成,它们使用 Paxos 来选举 master 和达成一致,读写都只在 master 上进行(这个看起来还是挺奢侈的,一个干活,四个看戏)。如果 master 挂掉了,在 master lease 过了以后,会重新选举。Client 根据 DNS 的解析,会访问到该 cell 里面的某一个节点,它不一定是 master,但是它会告知谁是 master。

分布式锁里面比较难处理的问题不是失败,而是无响应或者响应慢的超时问题。Chubby 采用一种租约的机制,在租约期内,不会轻易变动当前的 master 节点决定。在响应超时的时期,客户端的策略就是 “不轻举妄动”,耐心等待一段时间等服务端恢复,再不行才宣告失败:

这个图的大致意思是,第一次租约 C1 续订没有问题;第二次租约续订 C2 了之后,原来的 master 挂了,心跳请求无响应,这种情况客户端不清楚服务端的状况,就比较难处理,于是它只能暂时先阻塞所有的操作,等到 C2 过期了之后,有一个 grace period;接着再 grace period 之内,新的 master 被选举出来了,心跳就恢复了,之后租约续订的 C3 顺利进行。

这显然是一个异常情形,但是一旦这种情况发生,系统是被 block 住的,会有非常大的延迟问题。思考一下,这种情况其实就是从原来的 master 到新的 master 转换的选举和交接期间,锁服务是 “暂停” 的。再进一步,这个事情的本质,其实就是在分布式系统中,CAP 原理告诉我们,为了保证 Consistency 和 Partition Tolerance,这里的情形下牺牲掉了 Availability;同时,为了保证 consistency,很难去兼顾 performance(latency 和 throughput)。

此外,有一个有点反直觉的设计是,Chubby 客户端是设计有缓存的。通常来讲,我们设计一个锁机制,第一印象就是使用缓存会带来复杂性,因为缓存会带来一致性的难题。不过它的解决办法是,使用租约。在租约期内,服务端的锁数据不可以被修改,如果要修改,那么就要同步阻塞操作通知所有的客户端,以让缓存全部失效(如果联系不上客户端那就要等过期了)。很多分布式系统都是采用 poll 的方案——一堆 client 去 poll 一个核心服务(资源),但是 Chubby 彻底反过来了,其中一个原因也是低 throughput 的考虑,毕竟只有一个 master 在干活。

对于前面提到的 Martin Kleppmann 谈到的那个问题,Chubby 给了两个解决方法:

  1. 一个是锁延迟,就是说,如果一切正常,那么持有锁的客户端在释放掉锁之后,另外的客户端可以立即获取锁。但是如果出现超时等等异常,这个锁必须被空置一段时间才可以被分配。这个方法可以降低这个问题出现的概率,但是不能彻底规避问题。
  2. 第二个就是使用序列号了,对于写入操作来说,如果请求携带的序列号要小于前一次写入的序列号,那就丢弃请求,返回失败。

回过头思考 Chubby 的实现机制,我觉得有这样几个启发:

  1. 不要相信任何 “人”(节点),必须询问到多数人(quorum),多数人的结论才可以认为是正确的。这个方式发生在很多操作上,比如寻找 master,比如选举 master,比如写数据。
  2. 超时是很难处理的,它采用了租约的机制保证节点丢失时间的上限,使用 grace period 来容忍 master 选举发生的时延,使用序列号来保证正确性。

文章未经特殊标明皆为本人原创,未经许可不得用于任何商业用途,转载请保持完整性并注明来源链接 《四火的唠叨》

×Scan to share with WeChat

你可能也喜欢看:

  1. 笔记:线程的同步和互斥
  2. 看 JDK 源码,解几个疑问
  3. 从 DCL 的对象安全发布谈起
  4. Notes: Spark metrics
  5. Blog 安全问题小记

3 thoughts on “谈谈分布式锁”

  1. break says:
    09/23/2024 at 1:32 AM

    学习

    Reply
  2. laixintao says:
    09/19/2024 at 1:19 AM

    s3 versioning 的实现感觉有一些问题,感觉每一人每一次都可以拿到锁。

    如果两个人同时更新并且 list:

    A write
    A list
    B write
    B list

    A 和 B 都拿到锁了。

    Reply
    1. 四火 says:
      09/19/2024 at 10:52 AM

      list versions 的时候会返回所有的 versions,但是其中有且只有一个是 “最早的”version。所以他们看到的最早的 version 是一致的。这个 version 如果就是 A 或者 B 刚才创建文件的时候返回的那个 version(在 response 里面有一个 x-amz-version-id: VersionId),那就说明这个节点得到了锁。我文中可能没有说清楚,让我来更新一下

      Reply

Leave a Reply to laixintao Cancel reply

Your email address will not be published. Required fields are marked *

订阅·联系

四火,啰嗦的程序员一枚,现居西雅图

Amazon Google Groovy Hadoop Haskell Java JavaScript LeetCode Oracle Spark 互联网 亚马逊 前端 华为 历史 同步 团队 图解笔记 基础设施 工作 工作流 工具 工程师 应用系统 异步 微博 思考 技术 数据库 曼联 测试 生活 眼界 程序员 管理 系统设计 缓存 编程范型 美股 英语 西雅图 设计 问题 面向对象 面试

分类

  • Algorithm and Data Structure (30)
  • Concurrency and Asynchronization (6)
  • System Architecture and Design (43)
  • Distributed System (18)
  • Tools Frameworks and Libs (13)
  • Storage and Data Access (8)
  • Front-end Development (33)
  • Programming Languages and Paradigms (55)
  • Testing and Quality Assurance (4)
  • Network and Communication (6)
  • Authentication and Authorization (6)
  • Automation and Operation Excellence (13)
  • Machine Learning and Artificial Intelligence (6)
  • Product Design (7)
  • Hiring and Interviews (14)
  • Project and Team Management (14)
  • Engineering Culture (17)
  • Critical Thinking (25)
  • Career Growth (57)
  • Life Experience and Thoughts (45)

推荐文章

  • 聊一聊分布式系统中的时间
  • 谈谈分布式锁
  • 常见分布式系统设计图解(汇总)
  • 系统设计中的快速估算技巧
  • 从链表存在环的问题说起
  • 技术面试中,什么样的问题才是好问题?
  • 从物理时钟到逻辑时钟
  • 近期面试观摩的一些思考
  • RSA 背后的算法
  • 谈谈 Ops(汇总 + 最终篇):工具和实践
  • 不要让业务牵着鼻子走
  • 倔强的程序员
  • 谈谈微信的信息流
  • 评审的艺术——谈谈现实中的代码评审
  • Blog 安全问题小记
  • 求第 K 个数的问题
  • 一些前端框架的比较(下)——Ember.js 和 React
  • 一些前端框架的比较(上)——GWT、AngularJS 和 Backbone.js
  • 工作流系统的设计
  • Spark 的性能调优
  • “残酷” 的事实
  • 七年工作,几个故事
  • 从 Java 和 JavaScript 来学习 Haskell 和 Groovy(汇总)
  • 一道随机数题目的求解
  • 层次
  • Dynamo 的实现技术和去中心化
  • 也谈谈全栈工程师
  • 多重继承的演变
  • 编程范型:工具的选择
  • GWT 初体验
  • java.util.concurrent 并发包诸类概览
  • 从 DCL 的对象安全发布谈起
  • 不同团队的困惑
  • 不适合 Hadoop 解决的问题
  • 留心那些潜在的系统设计问题
  • 再谈大楼扔鸡蛋的问题
  • 几种华丽无比的开发方式
  • 我眼中的工程师文化
  • 观点的碰撞
  • 谈谈盗版软件问题
  • 对几个软件开发传统观点的质疑和反驳
  • MVC 框架的映射和解耦
  • 编程的未来
  • DAO 的演进
  • 致那些自嘲码农的苦逼程序员
  • Java 多线程发展简史
  • 珍爱生命,远离微博
  • 网站性能优化的三重境界
  • OSCache 框架源码解析
  • “ 你不适合做程序员”
  • 画圆画方的故事

近期评论

  • Ticket: TRANSACTION 1.922915 BTC. Go to withdrawal >> https://yandex.com/poll/enter/BXidu5Ewa8hnAFoFznqSi9?hs=20bd550f65c6e03103876b28cabc4da6& on 倔强的程序员
  • panshenlian.com on 初涉 ML Workflow 系统:Kubeflow Pipelines、Flyte 和 Metaflow
  • panzhixiang on 关于近期求职的近况和思考
  • Anonymous on 闲聊投资:亲自体验和护城河
  • 四火 on 关于近期求职的近况和思考
  • YC on 关于近期求职的近况和思考
  • mafulong on 常见分布式基础设施系统设计图解(四):分布式工作流系统
  • 四火 on 常见分布式基础设施系统设计图解(八):分布式键值存储系统
  • Anonymous on 我裸辞了
  • https://umlcn.com on 资源链接
© 2025 四火的唠叨 | Powered by Minimalist Blog WordPress Theme